RDCH 702 Quiz 2 Assigned 10 October 12, Due 17 October 12 Name:_____

<u>Quiz Topics: Speciation, Kinetics, Thermodynamics; Nuclear Reactions</u> Use the lecture notes, chart of the nuclides, table of the isotopes, and web links to answer the following questions.

1. (30 Points) Consider the complexation of Pu^{4+} with a monoprotic ligand (LH). The reaction is:

 $Pu^{4+}+L^{-} \leftrightarrow PuL^{3+}$

You measure the Pu and ligand speciation as a function of temperature at equilibrium. The equilibrium data are below:

Table 1. Concentration of Pu and ligands species as a function of temperature (K)

Т (К)	[PuL] M	[L ⁻] _f M	[Pu ⁴⁺] _f M
298	9.74E-07	5.26E-07	2.64E-08
298	9.54E-07	2.96E-07	4.59E-08
298	8.88E-07	1.12E-07	1.12E-07
283	9.28E-07	7.24E-08	7.24E-08
325	7.82E-07	2.18E-07	2.18E-07
335	7.32E-07	2.68E-07	2.68E-07
345	6.77E-07	3.23E-07	3.23E-07
355	6.19E-07	3.81E-07	3.81E-07
365	5.57E-07	4.43E-07	4.43E-07

Please provide the following. Ignore activities for this question.

- a. ΔG_{298}
- b. The equilibrium constant at 298 K
- c. ΔH over the experimental range
- d. ΔS over the experimental range
- e. Using the complexation constant calculate the speciation of Pu at 298 K for 1 mM ligand and 1 M Pu.

- 2. (15 Points) Using CHESS, provide speciation data for the following conditions. You should show the graphs of % species against the condition. Discuss the speciation of U and Pu as a function of concentration and Eh for the 5 conditions below. Provide dominant species for each evaluated condition.
 - a. 1E-6 M/L Pu^{4+} from pH 2 to pH 12
 - b. $1E-6 \text{ M/L UO}_2^{2+}$ from pH 2 to pH 12
 - c. 1E-3 M/L UO_2^{2+} from pH 2 to pH 12 at 200 mV Eh
 - d. 1 mmol/L Pu^4 + from 200 mV to 1250 mV Eh at pH 2

- 3. (15 Points) Determine the number of atoms and activity of 88 Rb produced from the exposure of 1 g of Rb metal to a neutron flux of 10^{14} n/cm²/sec
 - a. 300 seconds
 - b. 1 hour

- 4. (10 Points) Find the Q value, threshold energy, and Coulomb barrier for the following. You can use http://www.nndc.bnl.gov/qcalc/ for the Q value.
 - a. The reaction of ⁵⁹Co and an alpha particle that produces a neutron and the product nuclei
 - b. The reaction of a proton and ²⁰⁹Bi to produce ²⁰⁶Pb

5. (10 Points) Set up the equations to describe the speciation of uranyl, uranyl monocarbonate, and the uranyl dicarbonate using the complexation constants. This equation should show the total uranyl concentration as a function of free uranyl, free carbonate, and the complexation constants.

6. (10 Points) Describe the s-process in nucleosynthesis. What isotope range is produced through this process?

- 7. (10 Points) Identify which isotopes from the list below would be produced during the r-process
 - a. ¹⁰⁰Ru
 - b. ¹⁰⁰Mo
 - c. ¹²⁴Te
 - d. ¹³⁰Te
 - e. ¹²⁸Te
 - f. ¹¹²Sn
 - g. ¹¹⁵Sn
 - h. ¹²²Sn
 - i. ¹²⁴Sn
 - j. ²⁰⁹Bi
 - k. ²³⁸U
 - l. ²⁴⁴Pu